Ile wytrzyma ludzka kość...czyli zadanie dla nanotomografu AGH
INFORMATOR. Kraj
Jak wytrzymała będzie kość, po wszczepieniu do niej implantu? Odpowiedź na to pytanie ułatwi nanotomograf Akademii Górniczo-Hutniczej. Dzięki niemu inżynierowie medyczni, uzyskają trójwymiarowy obraz wnętrza kości i sprawdzą skuteczność implantów jeszcze przed ich wszczepieniem.
Wysokorozdzielczy nanotomograf Nanotom S firmy General Electric jest własnością nowego Laboratorium Mikro i Nano Tomografii Rentgenowskiej (MiNT) Akademii Górniczo-Hutniczej. Wart ponad 2 miliony złotych sprzęt sfinansowano ze środków Funduszu Nauki i Technologii Polskiej.
„Głównym celem zakupu aparatury było badanie własności mechanicznych kości i ich wewnętrznej struktury” – powiedział PAP szef laboratorium dr inż. Jacek Tarasiuk.
Jak wytłumaczył, wnętrze kości wygląda mniej więcej tak, jak gąbka. Może mieć mniejsze lub większe pory, ścianki kości mogą być grubsze lub cieńsze, od tego zależy jej wytrzymałość. „Kość jest żywa, dlatego reaguje na obciążenia. Jeżeli będzie obciążana, to wzmacnia się i rozbudowuje, jeżeli brakuje tych obciążeń to się osłabia” – wyjaśnił dr Tarasiuk.
„Zdarza się, że kosmonauci, którzy wracają po dłuższym pobycie w stanie nieważkości i mają tak osłabione kości, że nie mogą chodzić. Muszą je sobie dopiero odbudować poprzez ponowne ich obciążanie. Podobne problemy występują w przypadku implantów wszczepianych w kości” – powiedział szef laboratorium.
Może się zdarzyć, że wszczepiony implant zacznie przejmować większą cześć obciążeń i kość będzie słabo obciążona. Wtedy zaczyna słabnąć i w ekstremalnym przypadku może dojść do złamania takiego implantu. „Zależy nam, by poznać własności mechaniczne kości i modelować je w komputerze. Wtedy inżynierowie medyczni, którzy opracowują implanty, nie musieliby badać każdego implantu na żywym pacjencie czy zwierzęciu. Mogliby wstępnie – jeszcze w komputerze - sprawdzać, jak kość będzie się zachowywała” – wyjaśnił dr Tarasiuk.
Krakowski nanotomograf przypomina klasyczny tomograf rentgenowski, który można spotkać w szpitalach. Służy do tego, by oglądać wnętrze różnych obiektów bez konieczności ich rozkrawania. „O ile normalny tomograf pozwala oglądać szczegóły rzędu milimetrów, to tutaj są to obiekty znacznie mniejsze. Jako jeden z nielicznych, potrafi dostrzec szczegóły o rozmiarach 200 nanometrów” – powiedział szef laboratorium.
Urządzenie umożliwia trójwymiarową wizualizację wnętrza obiektu. Jest to niezwykle ważne, bo czasem trzeba badać struktury, które po rozkrojeniu uległyby zniszczeniu. „Czasem są to obiekty muzealne, np. moneta z czasów Mieszka I, której po prostu nie można zniszczyć” – powiedział rozmówca PAP.
Nanotomograf jest urządzeniem wszechstronnym, dlatego krakowscy uczeni chcą je wykorzystać do współpracy z innymi ośrodkami naukowymi. „Możemy nim badać tworzywa sztuczne - w których mamy mieszaninę różnych substancji np. tworzywa wzbogacane grafitem lub włóknem szklanym, szereg materiałów biologicznych, układy elektroniczne, ceramikę czy próbki geologiczne” – opisał dr Tarasiuk.
Jak podkreślił, funkcjonowanie nanotomografu wiąże się z gromadzeniem ogromnej ilości danych. „By zapisać jeden typowy pomiar, trzeba by było zapisać od kilku do kilkunastu płyt DVD. To są olbrzymie ilości danych. Całe laboratorium jest więc wyposażone w rozbudowany system komputerowy, który pozwala gromadzić i przetwarzać te dane, a potem je wizualizować” – powiedział szef laboratorium.
Laboratorium będzie również wykorzystywane w dydaktyce. Dzięki niemu studenci AGH zapoznają się z jedną z najnowocześniejszych metod badania przestrzennej struktury materiałów.
Wysokorozdzielczy nanotomograf Nanotom S firmy General Electric jest własnością nowego Laboratorium Mikro i Nano Tomografii Rentgenowskiej (MiNT) Akademii Górniczo-Hutniczej. Wart ponad 2 miliony złotych sprzęt sfinansowano ze środków Funduszu Nauki i Technologii Polskiej.
„Głównym celem zakupu aparatury było badanie własności mechanicznych kości i ich wewnętrznej struktury” – powiedział PAP szef laboratorium dr inż. Jacek Tarasiuk.
Jak wytłumaczył, wnętrze kości wygląda mniej więcej tak, jak gąbka. Może mieć mniejsze lub większe pory, ścianki kości mogą być grubsze lub cieńsze, od tego zależy jej wytrzymałość. „Kość jest żywa, dlatego reaguje na obciążenia. Jeżeli będzie obciążana, to wzmacnia się i rozbudowuje, jeżeli brakuje tych obciążeń to się osłabia” – wyjaśnił dr Tarasiuk.
„Zdarza się, że kosmonauci, którzy wracają po dłuższym pobycie w stanie nieważkości i mają tak osłabione kości, że nie mogą chodzić. Muszą je sobie dopiero odbudować poprzez ponowne ich obciążanie. Podobne problemy występują w przypadku implantów wszczepianych w kości” – powiedział szef laboratorium.
Może się zdarzyć, że wszczepiony implant zacznie przejmować większą cześć obciążeń i kość będzie słabo obciążona. Wtedy zaczyna słabnąć i w ekstremalnym przypadku może dojść do złamania takiego implantu. „Zależy nam, by poznać własności mechaniczne kości i modelować je w komputerze. Wtedy inżynierowie medyczni, którzy opracowują implanty, nie musieliby badać każdego implantu na żywym pacjencie czy zwierzęciu. Mogliby wstępnie – jeszcze w komputerze - sprawdzać, jak kość będzie się zachowywała” – wyjaśnił dr Tarasiuk.
Krakowski nanotomograf przypomina klasyczny tomograf rentgenowski, który można spotkać w szpitalach. Służy do tego, by oglądać wnętrze różnych obiektów bez konieczności ich rozkrawania. „O ile normalny tomograf pozwala oglądać szczegóły rzędu milimetrów, to tutaj są to obiekty znacznie mniejsze. Jako jeden z nielicznych, potrafi dostrzec szczegóły o rozmiarach 200 nanometrów” – powiedział szef laboratorium.
Urządzenie umożliwia trójwymiarową wizualizację wnętrza obiektu. Jest to niezwykle ważne, bo czasem trzeba badać struktury, które po rozkrojeniu uległyby zniszczeniu. „Czasem są to obiekty muzealne, np. moneta z czasów Mieszka I, której po prostu nie można zniszczyć” – powiedział rozmówca PAP.
Nanotomograf jest urządzeniem wszechstronnym, dlatego krakowscy uczeni chcą je wykorzystać do współpracy z innymi ośrodkami naukowymi. „Możemy nim badać tworzywa sztuczne - w których mamy mieszaninę różnych substancji np. tworzywa wzbogacane grafitem lub włóknem szklanym, szereg materiałów biologicznych, układy elektroniczne, ceramikę czy próbki geologiczne” – opisał dr Tarasiuk.
Jak podkreślił, funkcjonowanie nanotomografu wiąże się z gromadzeniem ogromnej ilości danych. „By zapisać jeden typowy pomiar, trzeba by było zapisać od kilku do kilkunastu płyt DVD. To są olbrzymie ilości danych. Całe laboratorium jest więc wyposażone w rozbudowany system komputerowy, który pozwala gromadzić i przetwarzać te dane, a potem je wizualizować” – powiedział szef laboratorium.
Laboratorium będzie również wykorzystywane w dydaktyce. Dzięki niemu studenci AGH zapoznają się z jedną z najnowocześniejszych metod badania przestrzennej struktury materiałów.
Poinformuj znajomych o tym artykule:
Inne w tym dziale:
- Podnośniki koszowe, usługi dźwigowe. Bydgoszcz REKLAMA
- Żylaki. Leczenie żylaków kończyn dolnych. Bydgoszcz, Inowrocław, Chojnice, Tuchola. REKLAMA
- Ortopeda. Chirurgia ortopedyczna. Medycyna sportowa. Warszawa REKLAMA
- Nowoczesne leczenie i optymizm – najlepsze antidotum na SM
- Choroba poznana 80 lat temu - wciąż nieznana. Rusza pierwsza w Polsce kampania edukacyjna dla pacjentów z ultrarzadkim nowotworem krwi: „Makroglobulinemia Waldenströma. Śladami Doktora Jana”
- Choroba Gauchera – wizytówka polskiego podejścia do chorób ultrarzadkich
- Antykoncepcja awaryjna nabiera tempa: Nowe dane Centrum e-Zdrowia
- Kardiolożka: o serce trzeba dbać od najmłodszych lat
- Ponad 600 tys. Polaków zaszczepiło się przeciw grypie
- Refundacja na papierze. Pacjentki tylko z jednego województwa mogą liczyć na leczenie zgodne z listą refundacyjną, która weszła w życie kilka miesięcy temu
- Pierwsze w Polsce zabiegi ablacji arytmii z zastosowaniem technologii CARTOSOUND FAM. „Niezwykle ważny krok w rozwoju elektrofizjologii”
- Czy starsi pacjenci otrzymają lepszą ochronę jeszcze w tym sezonie?
- Wyzwania hematoonkologii - na jakie terapie czekają polscy pacjenci?
- Wszystkie w tym dziale
REKLAMA